Ascorbate prevents microvascular dysfunction in the skeletal muscle of the septic rat.

نویسندگان

  • J Armour
  • K Tyml
  • D Lidington
  • J X Wilson
چکیده

Septic patients have low plasma ascorbate concentrations and compromised microvascular perfusion. The purpose of the present experiments was to determine whether ascorbate improves capillary function in volume-resuscitated sepsis. Cecal ligation and perforation (CLP) was performed on male Sprague-Dawley rats. The concentration of ascorbate in plasma and urine, mean arterial blood pressure, and density of continuously perfused capillaries in the extensor digitorum longus muscle were measured 24 h after surgery. CLP caused a 50% decrease (from 56 +/- 4 to 29 +/- 2 microM) in plasma ascorbate concentration, 1,000% increase (from 46 +/- 13 to 450 +/- 93 microM) in urine ascorbate concentration, 20% decrease (from 115 +/- 2 to 91 +/- 2 mmHg) in mean arterial pressure, and 30% decrease (from 24 +/- 1 to 17 +/- 1 capillaries/mm) in the density of perfused capillaries, compared with time-matched controls. A bolus of intravenous ascorbate (7.6 mg/100 g body wt) administered immediately after the CLP procedure increased plasma ascorbate concentration and restored both blood pressure and density of perfused capillaries to control levels. In vitro experiments showed that ascorbate (100 microM) inhibited replication of bacteria and prevented hydrogen peroxide injury to cultured microvascular endothelial cells. These results indicate that ascorbate is lost in the urine during sepsis and that a bolus of ascorbate can prevent microvascular dysfunction in the skeletal muscle of septic animals. Our study supports the view that ascorbate may be beneficial for patients with septic syndrome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ascorbate inhibits iNOS expression and preserves vasoconstrictor responsiveness in skeletal muscle of septic mice.

Inducible nitric oxide synthase (iNOS) expression in blood vessels contributes to the vascular hyporeactivity characteristic of sepsis. Our previous work demonstrated in vitro that ascorbate inhibits iNOS expression in lipopolysaccharide- and interferon-gamma-stimulated skeletal muscle endothelial cells (ECs) through an antioxidant mechanism. The present study evaluated in vivo the hypothesis t...

متن کامل

Vitamin C and Microvascular Dysfunction in Systemic Inflammation

Sepsis, life-threatening organ dysfunction caused by a dysfunctional host response to infection, is associated with high mortality. A promising strategy to improve the outcome is to inject patients intravenously with ascorbate (vitamin C). In animal models of sepsis, this injection improves survival and, among others, the microvascular function. This review examines our recent work addressing a...

متن کامل

Impairments in microvascular reactivity are related to organ failure in human sepsis.

Severe sepsis is a systemic inflammatory response to infection resulting in acute organ dysfunction. Vascular perfusion abnormalities are implicated in the pathology of organ failure, but studies of microvascular function in human sepsis are limited. We hypothesized that impaired microvascular responses to reactive hyperemia lead to impaired oxygen delivery relative to the needs of tissue and t...

متن کامل

Ascorbate protects against vascular leakage in cecal ligation and puncture-induced septic peritonitis.

Vascular leakage in multiple organs is a characteristic pathological change in sepsis. Our recent study revealed that ascorbate protects endothelial barrier function in microvascular endothelial cell monolayers through inhibiting serine/threonine protein phosphatase 2A (PP2A) activation (Han M, Pendem S, Teh SL, Sukumaran DK, Wu F, Wilson JX. Free Radic Biol Med 48: 128-135, 2010). The present ...

متن کامل

Biomonitoring the skeletal muscle metabolic dysfunction in knee osteoarthritis in older adults: Is Jumpstart Nutrition® Supplementation effective?

Background: This study aimed to investigate the efficacy of Jumpstart Nutrition® dietary supplement (JNDS) for enhancing the skeletal muscle metabolism and function of older adults with knee osteoarthritis (KOA) by evaluating the biomarkers of aberrant levels of serum tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), C-reactive protein (CRP), creatine kinase-muscle (CK-MM), and aldol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 90 3  شماره 

صفحات  -

تاریخ انتشار 2001